Serveur d'exploration sur la COVID en France

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases.

Identifieur interne : 000A57 ( Main/Exploration ); précédent : 000A56; suivant : 000A58

Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases.

Auteurs : Cynthia Tannous [Liban] ; George W. Booz [États-Unis] ; Raffaele Altara [États-Unis, Norvège] ; Dina H. Muhieddine [Liban] ; Mathias Mericskay [France] ; Marwan M. Refaat [Liban] ; Fouad A. Zouein [Liban]

Source :

RBID : pubmed:32853469

Abstract

Nicotinamide adenine dinucleotide (NAD) is an abundant cofactor that plays crucial roles in several cellular processes. NAD can be synthesized de novo starting with tryptophan, or from salvage pathways starting with NAD precursors like nicotinic acid (NA), nicotinamide (NAM) or nicotinamide riboside (NR), referred to as niacin/B3 vitamins, arising from dietary supply or from cellular NAD catabolism. Given the interconversion between its oxidized (NAD+ ) and reduced form (NADH), NAD participates in a wide range of reactions: regulation of cellular redox status, energy metabolism and mitochondrial biogenesis. Plus, NAD acts as a signalling molecule, being a cosubstrate for several enzymes such as sirtuins, poly-ADP-ribose-polymerases (PARPs) and some ectoenzymes like CD38, regulating critical biological processes like gene expression, DNA repair, calcium signalling and circadian rhythms. Given the large number of mitochondria present in cardiac tissue, the heart has the highest NAD levels and is one of the most metabolically demanding organs. In several models of heart failure, myocardial NAD levels are depressed and this depression is caused by mitochondrial dysfunction, metabolic remodelling and inflammation. Emerging evidence suggests that regulating NAD homeostasis by NAD precursor supplementation has therapeutic efficiency in improving myocardial bioenergetics and function. This review provides an overview of the latest understanding of the different NAD biosynthesis pathways, as well as its role as a signalling molecule particularly in cardiac tissue. We highlight the significance of preserving NAD equilibrium in various models of heart diseases and shed light on the potential pharmacological interventions aiming to use NAD boosters as therapeutic agents.

DOI: 10.1111/apha.13551
PubMed: 32853469


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases.</title>
<author>
<name sortKey="Tannous, Cynthia" sort="Tannous, Cynthia" uniqKey="Tannous C" first="Cynthia" last="Tannous">Cynthia Tannous</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.</nlm:affiliation>
<country xml:lang="fr">Liban</country>
<wicri:regionArea>Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Beirut</wicri:regionArea>
<wicri:noRegion>Beirut</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Booz, George W" sort="Booz, George W" uniqKey="Booz G" first="George W" last="Booz">George W. Booz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS</wicri:regionArea>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Altara, Raffaele" sort="Altara, Raffaele" uniqKey="Altara R" first="Raffaele" last="Altara">Raffaele Altara</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS</wicri:regionArea>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo</wicri:regionArea>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>KG Jebsen Center for Cardiac Research, University of Oslo, Oslo</wicri:regionArea>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Muhieddine, Dina H" sort="Muhieddine, Dina H" uniqKey="Muhieddine D" first="Dina H" last="Muhieddine">Dina H. Muhieddine</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.</nlm:affiliation>
<country xml:lang="fr">Liban</country>
<wicri:regionArea>Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Beirut</wicri:regionArea>
<wicri:noRegion>Beirut</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mericskay, Mathias" sort="Mericskay, Mathias" uniqKey="Mericskay M" first="Mathias" last="Mericskay">Mathias Mericskay</name>
<affiliation wicri:level="1">
<nlm:affiliation>INSERM Department of Signalling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, Châtenay-Malabry, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INSERM Department of Signalling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, Châtenay-Malabry</wicri:regionArea>
<wicri:noRegion>Châtenay-Malabry</wicri:noRegion>
<wicri:noRegion>Châtenay-Malabry</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Refaat, Marwan M" sort="Refaat, Marwan M" uniqKey="Refaat M" first="Marwan M" last="Refaat">Marwan M. Refaat</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Internal Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.</nlm:affiliation>
<country xml:lang="fr">Liban</country>
<wicri:regionArea>Department of Internal Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut</wicri:regionArea>
<wicri:noRegion>Beirut</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.</nlm:affiliation>
<country xml:lang="fr">Liban</country>
<wicri:regionArea>Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut Medical Center, Beirut</wicri:regionArea>
<wicri:noRegion>Beirut</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zouein, Fouad A" sort="Zouein, Fouad A" uniqKey="Zouein F" first="Fouad A" last="Zouein">Fouad A. Zouein</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.</nlm:affiliation>
<country xml:lang="fr">Liban</country>
<wicri:regionArea>Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Beirut</wicri:regionArea>
<wicri:noRegion>Beirut</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32853469</idno>
<idno type="pmid">32853469</idno>
<idno type="doi">10.1111/apha.13551</idno>
<idno type="wicri:Area/Main/Corpus">000340</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000340</idno>
<idno type="wicri:Area/Main/Curation">000340</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000340</idno>
<idno type="wicri:Area/Main/Exploration">000340</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases.</title>
<author>
<name sortKey="Tannous, Cynthia" sort="Tannous, Cynthia" uniqKey="Tannous C" first="Cynthia" last="Tannous">Cynthia Tannous</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.</nlm:affiliation>
<country xml:lang="fr">Liban</country>
<wicri:regionArea>Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Beirut</wicri:regionArea>
<wicri:noRegion>Beirut</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Booz, George W" sort="Booz, George W" uniqKey="Booz G" first="George W" last="Booz">George W. Booz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS</wicri:regionArea>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Altara, Raffaele" sort="Altara, Raffaele" uniqKey="Altara R" first="Raffaele" last="Altara">Raffaele Altara</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS</wicri:regionArea>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo</wicri:regionArea>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>KG Jebsen Center for Cardiac Research, University of Oslo, Oslo</wicri:regionArea>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Muhieddine, Dina H" sort="Muhieddine, Dina H" uniqKey="Muhieddine D" first="Dina H" last="Muhieddine">Dina H. Muhieddine</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.</nlm:affiliation>
<country xml:lang="fr">Liban</country>
<wicri:regionArea>Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Beirut</wicri:regionArea>
<wicri:noRegion>Beirut</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mericskay, Mathias" sort="Mericskay, Mathias" uniqKey="Mericskay M" first="Mathias" last="Mericskay">Mathias Mericskay</name>
<affiliation wicri:level="1">
<nlm:affiliation>INSERM Department of Signalling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, Châtenay-Malabry, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INSERM Department of Signalling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, Châtenay-Malabry</wicri:regionArea>
<wicri:noRegion>Châtenay-Malabry</wicri:noRegion>
<wicri:noRegion>Châtenay-Malabry</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Refaat, Marwan M" sort="Refaat, Marwan M" uniqKey="Refaat M" first="Marwan M" last="Refaat">Marwan M. Refaat</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Internal Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.</nlm:affiliation>
<country xml:lang="fr">Liban</country>
<wicri:regionArea>Department of Internal Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut</wicri:regionArea>
<wicri:noRegion>Beirut</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.</nlm:affiliation>
<country xml:lang="fr">Liban</country>
<wicri:regionArea>Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut Medical Center, Beirut</wicri:regionArea>
<wicri:noRegion>Beirut</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zouein, Fouad A" sort="Zouein, Fouad A" uniqKey="Zouein F" first="Fouad A" last="Zouein">Fouad A. Zouein</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.</nlm:affiliation>
<country xml:lang="fr">Liban</country>
<wicri:regionArea>Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Beirut</wicri:regionArea>
<wicri:noRegion>Beirut</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Acta physiologica (Oxford, England)</title>
<idno type="eISSN">1748-1716</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nicotinamide adenine dinucleotide (NAD) is an abundant cofactor that plays crucial roles in several cellular processes. NAD can be synthesized de novo starting with tryptophan, or from salvage pathways starting with NAD precursors like nicotinic acid (NA), nicotinamide (NAM) or nicotinamide riboside (NR), referred to as niacin/B
<sub>3</sub>
vitamins, arising from dietary supply or from cellular NAD catabolism. Given the interconversion between its oxidized (NAD
<sup>+</sup>
) and reduced form (NADH), NAD participates in a wide range of reactions: regulation of cellular redox status, energy metabolism and mitochondrial biogenesis. Plus, NAD acts as a signalling molecule, being a cosubstrate for several enzymes such as sirtuins, poly-ADP-ribose-polymerases (PARPs) and some ectoenzymes like CD38, regulating critical biological processes like gene expression, DNA repair, calcium signalling and circadian rhythms. Given the large number of mitochondria present in cardiac tissue, the heart has the highest NAD levels and is one of the most metabolically demanding organs. In several models of heart failure, myocardial NAD levels are depressed and this depression is caused by mitochondrial dysfunction, metabolic remodelling and inflammation. Emerging evidence suggests that regulating NAD homeostasis by NAD precursor supplementation has therapeutic efficiency in improving myocardial bioenergetics and function. This review provides an overview of the latest understanding of the different NAD biosynthesis pathways, as well as its role as a signalling molecule particularly in cardiac tissue. We highlight the significance of preserving NAD equilibrium in various models of heart diseases and shed light on the potential pharmacological interventions aiming to use NAD boosters as therapeutic agents.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32853469</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1748-1716</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
<Day>27</Day>
</PubDate>
</JournalIssue>
<Title>Acta physiologica (Oxford, England)</Title>
<ISOAbbreviation>Acta Physiol (Oxf)</ISOAbbreviation>
</Journal>
<ArticleTitle>Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases.</ArticleTitle>
<Pagination>
<MedlinePgn>e13551</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/apha.13551</ELocationID>
<Abstract>
<AbstractText>Nicotinamide adenine dinucleotide (NAD) is an abundant cofactor that plays crucial roles in several cellular processes. NAD can be synthesized de novo starting with tryptophan, or from salvage pathways starting with NAD precursors like nicotinic acid (NA), nicotinamide (NAM) or nicotinamide riboside (NR), referred to as niacin/B
<sub>3</sub>
vitamins, arising from dietary supply or from cellular NAD catabolism. Given the interconversion between its oxidized (NAD
<sup>+</sup>
) and reduced form (NADH), NAD participates in a wide range of reactions: regulation of cellular redox status, energy metabolism and mitochondrial biogenesis. Plus, NAD acts as a signalling molecule, being a cosubstrate for several enzymes such as sirtuins, poly-ADP-ribose-polymerases (PARPs) and some ectoenzymes like CD38, regulating critical biological processes like gene expression, DNA repair, calcium signalling and circadian rhythms. Given the large number of mitochondria present in cardiac tissue, the heart has the highest NAD levels and is one of the most metabolically demanding organs. In several models of heart failure, myocardial NAD levels are depressed and this depression is caused by mitochondrial dysfunction, metabolic remodelling and inflammation. Emerging evidence suggests that regulating NAD homeostasis by NAD precursor supplementation has therapeutic efficiency in improving myocardial bioenergetics and function. This review provides an overview of the latest understanding of the different NAD biosynthesis pathways, as well as its role as a signalling molecule particularly in cardiac tissue. We highlight the significance of preserving NAD equilibrium in various models of heart diseases and shed light on the potential pharmacological interventions aiming to use NAD boosters as therapeutic agents.</AbstractText>
<CopyrightInformation>© 2020 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tannous</LastName>
<ForeName>Cynthia</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Booz</LastName>
<ForeName>George W</ForeName>
<Initials>GW</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Altara</LastName>
<ForeName>Raffaele</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Muhieddine</LastName>
<ForeName>Dina H</ForeName>
<Initials>DH</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mericskay</LastName>
<ForeName>Mathias</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>INSERM Department of Signalling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, Châtenay-Malabry, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Refaat</LastName>
<ForeName>Marwan M</ForeName>
<Initials>MM</Initials>
<AffiliationInfo>
<Affiliation>Department of Internal Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zouein</LastName>
<ForeName>Fouad A</ForeName>
<Initials>FA</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-4451-804X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CNRS-103487</GrantID>
<Agency>Centre National de la Recherche Scientifique</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>CNRS-103507</GrantID>
<Agency>Centre National de la Recherche Scientifique</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>MPP-320095</GrantID>
<Agency>AUBMC Medical Practice Plan</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>MPP320145</GrantID>
<Agency>AUBMC Medical Practice Plan</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>0075811</GrantID>
<Agency>Fondation de France</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>100410</GrantID>
<Agency>AUMBC - Seed Grant</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>CRS-103556</GrantID>
<Agency>AUBMC - Collaborative Research Stimulus</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>ANR-17-CE17-0015-01</GrantID>
<Agency>Agence Nationale pour la Recherche</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Acta Physiol (Oxf)</MedlineTA>
<NlmUniqueID>101262545</NlmUniqueID>
<ISSNLinking>1748-1708</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">NAD</Keyword>
<Keyword MajorTopicYN="N">cardiac diseases</Keyword>
<Keyword MajorTopicYN="N">cardiac metabolism</Keyword>
<Keyword MajorTopicYN="N">inflammation</Keyword>
<Keyword MajorTopicYN="N">mitochondria</Keyword>
<Keyword MajorTopicYN="N">redox potential</Keyword>
<Keyword MajorTopicYN="N">transcription factors</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>08</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32853469</ArticleId>
<ArticleId IdType="doi">10.1111/apha.13551</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Young AHaWJ. The alcoholic ferment of yeast-juice. Part II.-the conferment of yeast-juice. Proc R Soc London B Containing Papers Biol Charac (1905-1934). 1906;78:6.</Citation>
</Reference>
<Reference>
<Citation>Euler-Chelpin HV. Fermentation of sugars and fermentative enzymes. Nobel Lectures, Chemistry 1922-1941. Amsterdam, the Netherlands: Elsevier Publishing Company; 1966:144-155.</Citation>
</Reference>
<Reference>
<Citation>Warburg OCW. Pyridin, the hydrogen-transferring component of the fermentation enzymes. Biochemische Zeitschrift. 1936;19(1).</Citation>
</Reference>
<Reference>
<Citation>Kornberg A, Pricer WE Jr. On the structure of triphosphopyridine nucleotide. J Biol Chem. 1950;186(2):557-567.</Citation>
</Reference>
<Reference>
<Citation>Mericskay M. Nicotinamide adenine dinucleotide homeostasis and signalling in heart disease: Pathophysiological implications and therapeutic potential. Arch Cardiovasc Dis. 2016;109(3):207-215.</Citation>
</Reference>
<Reference>
<Citation>Kohlhaas M, Nickel AG, Maack C. Mitochondrial energetics and calcium coupling in the heart. J Physiol. 2017;595(12):3753-3763.</Citation>
</Reference>
<Reference>
<Citation>Houtkooper RH, Williams RW, Auwerx J. Metabolic networks of longevity. Cell. 2010;142(1):9-14.</Citation>
</Reference>
<Reference>
<Citation>Alemasova EE, Lavrik OI. Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucleic Acids Res. 2019;47(8):3811-3827.</Citation>
</Reference>
<Reference>
<Citation>Aksoy P, Escande C, White TA, et al. Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multifunctional enzyme CD38. Biochem Biophys Res Commun. 2006;349(1):353-359.</Citation>
</Reference>
<Reference>
<Citation>Bender DA. Biochemistry of tryptophan in health and disease. Mol Aspects Med. 1983;6(2):101-197.</Citation>
</Reference>
<Reference>
<Citation>Liu L, Su X, Quinn WJ, et al. Quantitative analysis of NAD synthesis-breakdown fluxes. Cell Metab. 2018;27(5):1067-1080.e5.</Citation>
</Reference>
<Reference>
<Citation>Gross JW, Rajavel M, Grubmeyer C. Kinetic mechanism of nicotinic acid phosphoribosyltransferase: implications for energy coupling. Biochemistry. 1998;37(12):4189-4199.</Citation>
</Reference>
<Reference>
<Citation>Bieganowski P, Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell. 2004;117(4):495-502.</Citation>
</Reference>
<Reference>
<Citation>Khan JA, Tao X, Tong L. Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents. Nat Struct Mol Biol. 2006;13(7):582-588.</Citation>
</Reference>
<Reference>
<Citation>Youn H-S, Kim TG, Kim M-K, et al. Structural Insights into the quaternary catalytic mechanism of hexameric human quinolinate phosphoribosyltransferase, a key enzyme in de novo NAD biosynthesis. Sci Rep. 2016;6:19681.</Citation>
</Reference>
<Reference>
<Citation>Nikiforov A, Dolle C, Niere M, Ziegler M. Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation. J Biol Chem. 2011;286(24):21767-21778.</Citation>
</Reference>
<Reference>
<Citation>Hara N, Yamada K, Terashima M, Osago H, Shimoyama M, Tsuchiya M. Molecular identification of human glutamine- and ammonia-dependent NAD synthetases. Carbon-nitrogen hydrolase domain confers glutamine dependency. J Biol Chem. 2003;278(13):10914-10921.</Citation>
</Reference>
<Reference>
<Citation>Canto C, Menzies KJ, Auwerx J. NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 2015;22(1):31-53.</Citation>
</Reference>
<Reference>
<Citation>Berger F, Lau C, Dahlmann M, Ziegler M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J Biol Chem. 2005;280(43):36334-36341.</Citation>
</Reference>
<Reference>
<Citation>Raffaelli N, Sorci L, Amici A, Emanuelli M, Mazzola F, Magni G. Identification of a novel human nicotinamide mononucleotide adenylyltransferase. Biochem Biophys Res Commun. 2002;297(4):835-840.</Citation>
</Reference>
<Reference>
<Citation>Cai YI, Yu S-S, Chen S-R, et al. Nmnat2 protects cardiomyocytes from hypertrophy via activation of SIRT6. FEBS Lett. 2012;586(6):866-874.</Citation>
</Reference>
<Reference>
<Citation>Ratajczak J, Joffraud M, Trammell SAJ, et al. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nat Commun. 2016;7:13103.</Citation>
</Reference>
<Reference>
<Citation>Diguet N, Trammell SAJ, Tannous C, et al. Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. Circulation. 2018;137(21):2256-2273.</Citation>
</Reference>
<Reference>
<Citation>Muchir A, Pavlidis P, Decostre V, et al. Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy. J Clin Invest. 2007;117(5):1282-1293.</Citation>
</Reference>
<Reference>
<Citation>Akbay EA, Moslehi J, Christensen CL, et al. D-2-hydroxyglutarate produced by mutant IDH2 causes cardiomyopathy and neurodegeneration in mice. Genes Dev. 2014;28(5):479-490.</Citation>
</Reference>
<Reference>
<Citation>Martin OJ, Lai L, Soundarapandian MM, et al. A role for peroxisome proliferator-activated receptor gamma coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth. Circ Res. 2014;114(4):626-636.</Citation>
</Reference>
<Reference>
<Citation>Trammell SA, Yu L, Redpath P, Migaud ME, Brenner C. Nicotinamide riboside is a major NAD+ precursor vitamin in cow milk. J Nutr. 2016;146(5):957-963.</Citation>
</Reference>
<Reference>
<Citation>Cantó C, Houtkooper R, Pirinen E, et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012;15(6):838-847.</Citation>
</Reference>
<Reference>
<Citation>Trammell SAJ, Schmidt MS, Weidemann BJ, et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun. 2016;7:12948.</Citation>
</Reference>
<Reference>
<Citation>Fletcher RS, Ratajczak J, Doig CL, et al. Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells. Mol Metab. 2017;6(8):819-832.</Citation>
</Reference>
<Reference>
<Citation>van de Weijer T, Phielix E, Bilet L, et al. Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans. Diabetes. 2015;64(4):1193-1201.</Citation>
</Reference>
<Reference>
<Citation>Grozio A, Mills KF, Yoshino J, et al. Slc12a8 is a nicotinamide mononucleotide transporter. Nat Metab. 2019;1(1):47-57.</Citation>
</Reference>
<Reference>
<Citation>Schmidt MS, Brenner C. Absence of evidence that Slc12a8 encodes a nicotinamide mononucleotide transporter. Nature Metab. 2019;1(7):660-661.</Citation>
</Reference>
<Reference>
<Citation>Grozio A, Mills K, Yoshino J, et al. Reply to: absence of evidence that Slc12a8 encodes a nicotinamide mononucleotide transporter. Nature Metab. 2019;1(7):662-665.</Citation>
</Reference>
<Reference>
<Citation>Houtkooper RH, Canto C, Wanders RJ, Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev. 2010;31(2):194-223.</Citation>
</Reference>
<Reference>
<Citation>Rine J, Strathern JN, Hicks JB, Herskowitz I. A suppressor of mating-type locus mutations in Saccharomyces cerevisiae: evidence for and identification of cryptic mating-type loci. Genetics. 1979;93(4):877-901.</Citation>
</Reference>
<Reference>
<Citation>Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403(6771):795-800.</Citation>
</Reference>
<Reference>
<Citation>Cencioni C, Spallotta F, Mai A, et al. Sirtuin function in aging heart and vessels. J Mol Cell Cardiol. 2015;83:55-61.</Citation>
</Reference>
<Reference>
<Citation>Sauve AA, Wolberger C, Schramm VL, Boeke JD. The biochemistry of sirtuins. Annu Rev Biochem. 2006;75:435-465.</Citation>
</Reference>
<Reference>
<Citation>Guarente L, Picard F. Calorie restriction-the SIR2 connection. Cell. 2005;120(4):473-482.</Citation>
</Reference>
<Reference>
<Citation>Boily G, Seifert EL, Bevilacqua L, et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One. 2008;3(3):e1759.</Citation>
</Reference>
<Reference>
<Citation>Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004;429(6993):771-776.</Citation>
</Reference>
<Reference>
<Citation>Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature. 2003;423(6936):181-185.</Citation>
</Reference>
<Reference>
<Citation>Vaziri H, Dessain SK, Eaton EN, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107(2):149-159.</Citation>
</Reference>
<Reference>
<Citation>Yamac AH, Uysal O, Ismailoglu Z, et al. Premature myocardial infarction: genetic variations in SIRT1 affect disease susceptibility. Cardiol Res Pract. 2019;2019:1-10.</Citation>
</Reference>
<Reference>
<Citation>Cattelan A, Ceolotto G, Bova S, et al. NAD(+)-dependent SIRT1 deactivation has a key role on ischemia-reperfusion-induced apoptosis. Vascul Pharmacol. 2015;70:35-44.</Citation>
</Reference>
<Reference>
<Citation>Alcendor RR, Gao S, Zhai P, et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res. 2007;100(10):1512-1521.</Citation>
</Reference>
<Reference>
<Citation>Oka S, Alcendor R, Zhai P, et al. PPARalpha-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway. Cell Metab. 2011;14(5):598-611.</Citation>
</Reference>
<Reference>
<Citation>Dong HW, Zhang LF, Bao SL. AMPK regulates energy metabolism through the SIRT1 signaling pathway to improve myocardial hypertrophy. Eur Rev Med Pharmacol Sci. 2018;22(9):2757-2766.</Citation>
</Reference>
<Reference>
<Citation>Tang X, Chen X-F, Wang N-Y, et al. SIRT2 acts as a cardioprotective deacetylase in pathological cardiac hypertrophy. Circulation. 2017;136(21):2051-2067.</Citation>
</Reference>
<Reference>
<Citation>Klishadi MS, Zarei F, Hejazian SH, Moradi A, Hemati M, Safari F. Losartan protects the heart against ischemia reperfusion injury: sirtuin3 involvement. J Pharm Pharm Sci. 2015;18(1):112-123.</Citation>
</Reference>
<Reference>
<Citation>Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol. 2008;28(20):6384-6401.</Citation>
</Reference>
<Reference>
<Citation>Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest. 2009;119(9):2758-2771.</Citation>
</Reference>
<Reference>
<Citation>Pillai VB, Bindu S, Sharp W, et al. Sirt3 protects mitochondrial DNA damage and blocks the development of doxorubicin-induced cardiomyopathy in mice. Am J Physiol Heart Circ Physiol. 2016;310(8):H962-972.</Citation>
</Reference>
<Reference>
<Citation>Castillo EC, Morales JA, Chapoy-Villanueva H, et al. Mitochondrial hyperacetylation in the failing hearts of obese patients mediated partly by a reduction in SIRT3: the involvement of the mitochondrial permeability transition pore. Cell Physiol Biochem. 2019;53(3):465-479.</Citation>
</Reference>
<Reference>
<Citation>Zeng G, Liu H, Wang H. Amelioration of myocardial ischemia-reperfusion injury by SIRT4 involves mitochondrial protection and reduced apoptosis. Biochem Biophys Res Commun. 2018;502(1):15-21.</Citation>
</Reference>
<Reference>
<Citation>Xiao Y, Zhang X, Fan S, Cui G, Shen Z. MicroRNA-497 inhibits cardiac hypertrophy by targeting Sirt4. PLoS One. 2016;11(12):e0168078.</Citation>
</Reference>
<Reference>
<Citation>Zhang Z-Z, Cheng Y-W, Jin H-Y, et al. The sirtuin 6 prevents angiotensin II-mediated myocardial fibrosis and injury by targeting AMPK-ACE2 signaling. Oncotarget. 2017;8(42):72302-72314.</Citation>
</Reference>
<Reference>
<Citation>Shen P, Feng X, Zhang X, et al. SIRT6 suppresses phenylephrine-induced cardiomyocyte hypertrophy though inhibiting p300. J Pharmacol Sci. 2016;132(1):31-40.</Citation>
</Reference>
<Reference>
<Citation>Li Y, Meng X, Wang W, et al. Cardioprotective effects of SIRT6 in a mouse model of transverse aortic constriction-induced heart failure. Front Physiol. 2017;8:394.</Citation>
</Reference>
<Reference>
<Citation>Yamamura S, Izumiya Y, Araki S, et al. Cardiomyocyte sirt (Sirtuin) 7 ameliorates stress-induced cardiac hypertrophy by interacting with and deacetylating GATA4. Hypertension. 2020;75(1):98-108.</Citation>
</Reference>
<Reference>
<Citation>Araki S, Izumiya Y, Rokutanda T, et al. Sirt7 contributes to myocardial tissue repair by maintaining transforming growth factor-beta signaling pathway. Circulation. 2015;132(12):1081-1093.</Citation>
</Reference>
<Reference>
<Citation>Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature. 2009;460(7255):587-591.</Citation>
</Reference>
<Reference>
<Citation>Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434(7029):113-118.</Citation>
</Reference>
<Reference>
<Citation>Gurd BJ. Deacetylation of PGC-1alpha by SIRT1: importance for skeletal muscle function and exercise-induced mitochondrial biogenesis. Appl Physiol Nutr Metab. 2011;36(5):589-597.</Citation>
</Reference>
<Reference>
<Citation>Hsu C-P, Zhai P, Yamamoto T, et al. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation. 2010;122(21):2170-2182.</Citation>
</Reference>
<Reference>
<Citation>Sanz M-N, Grimbert L, Moulin M, et al. Inducible cardiac-specific deletion of Sirt1 in male mice reveals progressive cardiac dysfunction and sensitization of the heart to pressure overload. Int J Mol Sci. 2019;20(20).</Citation>
</Reference>
<Reference>
<Citation>Doulamis IP, Tzani AI, Konstantopoulos PS, et al. A sirtuin 1/MMP2 prognostic index for myocardial infarction in patients with advanced coronary artery disease. Int J Cardiol. 2017;230:447-453.</Citation>
</Reference>
<Reference>
<Citation>Byun J, Oka S-I, Imai N, et al. Both gain and loss of Nampt function promote pressure overload-induced heart failure. Am J Physiol Heart Circ Physiol. 2019;317(4):H711-H725.</Citation>
</Reference>
<Reference>
<Citation>Corbi G, Conti V, Troisi J, et al. Cardiac rehabilitation increases SIRT1 activity and beta-hydroxybutyrate levels and decreases oxidative stress in patients with hf with preserved ejection fraction. Oxid Med Cell Longev. 2019;2019:7049237.</Citation>
</Reference>
<Reference>
<Citation>Gomes P, Fleming Outeiro T, Cavadas C. Emerging role of sirtuin 2 in the regulation of mammalian metabolism. Trends Pharmacol Sci. 2015;36(11):756-768.</Citation>
</Reference>
<Reference>
<Citation>Zhang L, Hou X, Ma R, Moley K, Schedl T, Wang Q. Sirt2 functions in spindle organization and chromosome alignment in mouse oocyte meiosis. FASEB J. 2014;28(3):1435-1445.</Citation>
</Reference>
<Reference>
<Citation>Rothgiesser KM, Erener S, Waibel S, Luscher B, Hottiger MO. SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310. J Cell Sci. 2010;123(Pt 24):4251-4258.</Citation>
</Reference>
<Reference>
<Citation>Liu G, Park S-H, Imbesi M, et al. Loss of NAD-dependent protein deacetylase Sirtuin-2 alters mitochondrial protein acetylation and dysregulates mitophagy. Antioxid Redox Signal. 2017;26(15):849-863.</Citation>
</Reference>
<Reference>
<Citation>Noga AA, Soltys CL, Barr AJ, Kovacic S, Lopaschuk GD, Dyck JR. Expression of an active LKB1 complex in cardiac myocytes results in decreased protein synthesis associated with phenylephrine-induced hypertrophy. Am J Physiol Heart Circ Physiol. 2007;292(3):H1460-1469.</Citation>
</Reference>
<Reference>
<Citation>Ahn B-H, Kim H-S, Song S, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA. 2008;105(38):14447-14452.</Citation>
</Reference>
<Reference>
<Citation>Benigni A, Cassis P, Conti S, et al. Sirt3 deficiency shortens lifespan and impairs cardiac mitochondrial function rescued by Opa1 gene transfer. Antioxid Redox Signal. 2019;31(17):1255-1271.</Citation>
</Reference>
<Reference>
<Citation>Hebert A, Dittenhafer-Reed K, Yu W, et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell. 2013;49(1):186-199.</Citation>
</Reference>
<Reference>
<Citation>Koentges C, Pfeil K, Schnick T, et al. SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic Res Cardiol. 2015;110(4):36.</Citation>
</Reference>
<Reference>
<Citation>Porter GA, Urciuoli WR, Brookes PS, Nadtochiy SM. SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. Am J Physiol Heart Circ Physiol. 2014;306(12):H1602-1609.</Citation>
</Reference>
<Reference>
<Citation>Chen T, Liu J, Li NA, et al. Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD. PLoS One. 2015;10(3):e0118909.</Citation>
</Reference>
<Reference>
<Citation>Pillai VB, Sundaresan NR, Kim G, et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem. 2010;285(5):3133-3144.</Citation>
</Reference>
<Reference>
<Citation>Samant SA, Zhang HJ, Hong Z, et al. SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol Cell Biol. 2014;34(5):807-819.</Citation>
</Reference>
<Reference>
<Citation>You J, Yue Z, Chen S, et al. Receptor-interacting Protein 140 represses Sirtuin 3 to facilitate hypertrophy, mitochondrial dysfunction and energy metabolic dysfunction in cardiomyocytes. Acta Physiol (Oxf). 2017;220(1):58-71.</Citation>
</Reference>
<Reference>
<Citation>Hafner AV, Dai J, Gomes AP, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY). 2010;2(12):914.</Citation>
</Reference>
<Reference>
<Citation>Horton JL, Martin OJ, Lai L, et al. Mitochondrial protein hyperacetylation in the failing heart. JCI Insight. 2016;2(1):84897.</Citation>
</Reference>
<Reference>
<Citation>Nadtochiy SM, Wang YT, Zhang J, et al. Potential mechanisms linking SIRT activity and hypoxic 2-hydroxyglutarate generation: no role for direct enzyme (de)acetylation. Biochem J. 2017;474(16):2829-2839.</Citation>
</Reference>
<Reference>
<Citation>Mahlknecht U, Voelter-Mahlknecht S. Fluorescence in situ hybridization and chromosomal organization of the sirtuin 4 gene (Sirt4) in the mouse. Biochem Biophys Res Commun. 2009;382(4):685-690.</Citation>
</Reference>
<Reference>
<Citation>Liu B, Che W, Xue J, et al. SIRT4 prevents hypoxia-induced apoptosis in H9c2 cardiomyoblast cells. Cell Physiol Biochem. 2013;32(3):655-662.</Citation>
</Reference>
<Reference>
<Citation>Wagner GR, Hirschey MD. Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol Cell. 2014;54(1):5-16.</Citation>
</Reference>
<Reference>
<Citation>Hershberger KA, Abraham DM, Martin AS, et al. Sirtuin 5 is required for mouse survival in response to cardiac pressure overload. J Biol Chem. 2017;292(48):19767-19781.</Citation>
</Reference>
<Reference>
<Citation>Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006;124(2):315-329.</Citation>
</Reference>
<Reference>
<Citation>Zhong L, D'Urso A, Toiber D, et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell. 2010;140(2):280-293.</Citation>
</Reference>
<Reference>
<Citation>Van Gool F, Gallí M, Gueydan C, et al. Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner. Nat Med. 2009;15(2):206-210.</Citation>
</Reference>
<Reference>
<Citation>Mao Z, Hine C, Tian X, et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 2011;332(6036):1443-1446.</Citation>
</Reference>
<Reference>
<Citation>Sundaresan NR, Vasudevan P, Zhong L, et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med. 2012;18(11):1643-1650.</Citation>
</Reference>
<Reference>
<Citation>Yu SS, Cai Y, Ye JT, et al. Sirtuin 6 protects cardiomyocytes from hypertrophy in vitro via inhibition of NF-kappaB-dependent transcriptional activity. Br J Pharmacol. 2013;168(1):117-128.</Citation>
</Reference>
<Reference>
<Citation>Renguet E, Bultot L, Beauloye C, Horman S, Bertrand L. The regulation of insulin-stimulated cardiac glucose transport via protein acetylation. Front Cardiovasc Med. 2018;5:70.</Citation>
</Reference>
<Reference>
<Citation>Renguet E, Ginion A, Gélinas R, et al. Metabolism and acetylation contribute to leucine-mediated inhibition of cardiac glucose uptake. Am J Physiol Heart Circ Physiol. 2017;313(2):H432-H445.</Citation>
</Reference>
<Reference>
<Citation>Kanwal A, Pillai VB, Samant S, Gupta M, Gupta MP. The nuclear and mitochondrial sirtuins, Sirt6 and Sirt3, regulate each other's activity and protect the heart from developing obesity-mediated diabetic cardiomyopathy. FASEB J. 2019;33(10):10872-10888.</Citation>
</Reference>
<Reference>
<Citation>Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 2006;20(9):1075-1080.</Citation>
</Reference>
<Reference>
<Citation>Kiran S, Chatterjee N, Singh S, Kaul SC, Wadhwa R, Ramakrishna G. Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal. FEBS J. 2013;280(14):3451-3466.</Citation>
</Reference>
<Reference>
<Citation>Vakhrusheva O, Smolka C, Gajawada P, et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res. 2008;102(6):703-710.</Citation>
</Reference>
<Reference>
<Citation>Jagtap P, Szabo C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov. 2005;4(5):421-440.</Citation>
</Reference>
<Reference>
<Citation>Butler AJ, Ordahl CP. Poly(ADP-ribose) polymerase binds with transcription enhancer factor 1 to MCAT1 elements to regulate muscle-specific transcription. Mol Cell Biol. 1999;19(1):296-306.</Citation>
</Reference>
<Reference>
<Citation>Alano CC, Garnier P, Ying W, Higashi Y, Kauppinen TM, Swanson RA. NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J Neurosci. 2010;30(8):2967-2978.</Citation>
</Reference>
<Reference>
<Citation>Sun S, Hu Y, Zheng Q, et al. Poly(ADP-ribose) polymerase 1 induces cardiac fibrosis by mediating mammalian target of rapamycin activity. J Cell Biochem. 2019;120(4):4813-4826.</Citation>
</Reference>
<Reference>
<Citation>Zhang D, Hu XU, Li J, et al. DNA damage-induced PARP1 activation confers cardiomyocyte dysfunction through NAD(+) depletion in experimental atrial fibrillation. Nat Commun. 2019;10(1):1307.</Citation>
</Reference>
<Reference>
<Citation>Wang J, Hao L, Wang Y, et al. Inhibition of poly (ADP-ribose) polymerase and inducible nitric oxide synthase protects against ischemic myocardial damage by reduction of apoptosis. Mol Med Rep. 2015;11(3):1768-1776.</Citation>
</Reference>
<Reference>
<Citation>Wang H, Yang X, Yang Q, Gong L, Xu H, Wu Z. PARP-1 inhibition attenuates cardiac fibrosis induced by myocardial infarction through regulating autophagy. Biochem Biophys Res Commun. 2018;503(3):1625-1632.</Citation>
</Reference>
<Reference>
<Citation>Szabo C. Cardioprotective effects of poly(ADP-ribose) polymerase inhibition. Pharmacol Res. 2005;52(1):34-43.</Citation>
</Reference>
<Reference>
<Citation>Wang C, Xu W, Zhang Y, Zhang F, Huang K. PARP1 promote autophagy in cardiomyocytes via modulating FoxO3a transcription. Cell Death Dis. 2018;9(11):1047.</Citation>
</Reference>
<Reference>
<Citation>Geng B, Cai YI, Gao SI, et al. PARP-2 knockdown protects cardiomyocytes from hypertrophy via activation of SIRT1. Biochem Biophys Res Commun. 2013;430(3):944-950.</Citation>
</Reference>
<Reference>
<Citation>Jackson DG, Bell JI. Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation. J Immunol. 1990;144(7):2811-2815.</Citation>
</Reference>
<Reference>
<Citation>Zhao YJ, Lam CM, Lee HC. The membrane-bound enzyme CD38 exists in two opposing orientations. Sci Signal. 2012;5(241):ra67.</Citation>
</Reference>
<Reference>
<Citation>Reyes LA, Boslett J, Varadharaj S, et al. Depletion of NADP(H) due to CD38 activation triggers endothelial dysfunction in the postischemic heart. Proc Natl Acad Sci USA. 2015;112(37):11648-11653.</Citation>
</Reference>
<Reference>
<Citation>Lin WK, Bolton EL, Cortopassi WA, et al. Synthesis of the Ca(2+)-mobilizing messengers NAADP and cADPR by intracellular CD38 enzyme in the mouse heart: Role in beta-adrenoceptor signaling. J Biol Chem. 2017;292(32):13243-13257.</Citation>
</Reference>
<Reference>
<Citation>Aksoy P, White TA, Thompson M, Chini EN. Regulation of intracellular levels of NAD: a novel role for CD38. Biochem Biophys Res Commun. 2006;345(4):1386-1392.</Citation>
</Reference>
<Reference>
<Citation>Boslett J, Helal M, Chini E, Zweier JL. Genetic deletion of CD38 confers post-ischemic myocardial protection through preserved pyridine nucleotides. J Mol Cell Cardiol. 2018;118:81-94.</Citation>
</Reference>
<Reference>
<Citation>Wang L-F, Huang C-C, Xiao Y-F, et al. CD38 deficiency protects heart from high fat diet-induced oxidative stress via activating Sirt3/FOXO3 pathway. Cell Physiol Biochem. 2018;48(6):2350-2363.</Citation>
</Reference>
<Reference>
<Citation>Tarragó MG, Chini CCS, Kanamori KS, et al. A potent and specific cd38 inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD(+). Decline. Cell Metab. 2018;27(5):1081-1095.e10.</Citation>
</Reference>
<Reference>
<Citation>Pillai JB, Isbatan A, Imai S, Gupta MP. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J Biol Chem. 2005;280(52):43121-43130.</Citation>
</Reference>
<Reference>
<Citation>Elfgang C, Eckert R, Lichtenberg-Fraté H, et al. Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol. 1995;129(3):805-817.</Citation>
</Reference>
<Reference>
<Citation>Imai S, The NAD. World: a new systemic regulatory network for metabolism and aging-Sirt1, systemic NAD biosynthesis, and their importance. Cell Biochem Biophys. 2009;53(2):65-74.</Citation>
</Reference>
<Reference>
<Citation>Vignier N, Chatzifrangkeskou M, Morales Rodriguez B, et al. Rescue of biosynthesis of nicotinamide adenine dinucleotide protects the heart in cardiomyopathy caused by lamin A/C gene mutation. Hum Mol Genet. 2018;27(22):3870-3880.</Citation>
</Reference>
<Reference>
<Citation>Karamanlidis G, Lee C, Garcia-Menendez L, et al. Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab. 2013;18(2):239-250.</Citation>
</Reference>
<Reference>
<Citation>Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science. 2004;305(5686):1010-1013.</Citation>
</Reference>
<Reference>
<Citation>Ying W, Wei G, Wang D, et al. Intranasal administration with NAD+ profoundly decreases brain injury in a rat model of transient focal ischemia. Front Biosci. 2007;12:2728-2734.</Citation>
</Reference>
<Reference>
<Citation>Vaur P, Brugg B, Mericskay M, et al. Nicotinamide riboside, a form of vitamin B3, protects against excitotoxicity-induced axonal degeneration. FASEB J. 2017;31(12):5440-5452.</Citation>
</Reference>
<Reference>
<Citation>Liu L, Wang P, Liu X, He D, Liang C, Yu Y. Exogenous NAD(+) supplementation protects H9c2 cardiac myoblasts against hypoxia/reoxygenation injury via Sirt1-p53 pathway. Fundam Clin Pharmacol. 2014;28(2):180-189.</Citation>
</Reference>
<Reference>
<Citation>de Picciotto NE, Gano LB, Johnson LC, et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell. 2016;15(3):522-530.</Citation>
</Reference>
<Reference>
<Citation>Camacho-Pereira J, Tarragó MG, Chini CCS, et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 2016;23(6):1127-1139.</Citation>
</Reference>
<Reference>
<Citation>Escande C, Nin V, Price NL, et al. Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes. 2013;62(4):1084-1093.</Citation>
</Reference>
<Reference>
<Citation>Xu W, Barrientos T, Mao L, Rockman HA, Sauve AA, Andrews NC. Lethal cardiomyopathy in mice lacking transferrin receptor in the heart. Cell Rep. 2015;13(3):533-545.</Citation>
</Reference>
<Reference>
<Citation>Ryu D, Zhang H, Ropelle ER, et al. NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation. Sci Transl Med. 2016;8(361):361ra139.</Citation>
</Reference>
<Reference>
<Citation>Smyrnias I, Gray SP, Okonko DO, et al. Cardioprotective effect of the mitochondrial unfolded protein response during chronic pressure overload. J Am Coll Cardiol. 2019;73(14):1795-1806.</Citation>
</Reference>
<Reference>
<Citation>Yamamoto T, Byun J, Zhai P, Ikeda Y, Oka S, Sadoshima J. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One. 2014;9(6):e98972.</Citation>
</Reference>
<Reference>
<Citation>Martin AS, Abraham DM, Hershberger KA, et al. Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich's ataxia cardiomyopathy model. JCI Insight. 2017;2(14):93885.</Citation>
</Reference>
<Reference>
<Citation>Elhassan YS, Philp AA, Lavery GG. Targeting NAD+ in Metabolic Disease: New Insights Into an Old Molecule. J Endocr Soc. 2017;1(7):816-835.</Citation>
</Reference>
<Reference>
<Citation>Deloux R, Tannous C, Diguet N, Li Z, Mericskay M. Alternative NAD+ biosynthesis pathway activated by energy stress stimulates glycolysis in cardiac cells. Arch Cardiovasc Dis Suppl. 2018;10(2):229.</Citation>
</Reference>
<Reference>
<Citation>Katsyuba E, Auwerx J. Modulating NAD(+) metabolism, from bench to bedside. EMBO J. 2017;36(18):2670-2683.</Citation>
</Reference>
<Reference>
<Citation>Garg A, Sharma A, Krishnamoorthy P, et al. Role of niacin in current clinical practice: a systematic review. Am J Med. 2017;130(2):173-187.</Citation>
</Reference>
<Reference>
<Citation>Nadtochiy SM, Wang YT, Nehrke K, Munger J, Brookes PS. Cardioprotection by nicotinamide mononucleotide (NMN): Involvement of glycolysis and acidic pH. J Mol Cell Cardiol. 2018;121:155-162.</Citation>
</Reference>
<Reference>
<Citation>Bai P, Canto C. The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. Cell Metab. 2012;16(3):290-295.</Citation>
</Reference>
<Reference>
<Citation>Evaluation SCotS, its oDRIa, Panel on Folate OBV, and Choline and Nutrients SoURLo, Board FaN, Medicine Io. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B 6, Folate, Vitamin B 12, Pantothenic Acid, Biotin, and Choline. In: Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, DC: National Academy Press; 1998.</Citation>
</Reference>
<Reference>
<Citation>Guyton JR, Bays HE. Safety considerations with niacin therapy. Am J Cardiol. 2007;99(6A):22C-31C.</Citation>
</Reference>
<Reference>
<Citation>Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem. 2002;277(47):45099-45107.</Citation>
</Reference>
<Reference>
<Citation>Conze D, Brenner C, Kruger CL. Safety and metabolism of long-term administration of NIAGEN (Nicotinamide Riboside Chloride) in a randomized, double-blind, placebo-controlled clinical trial of healthy overweight adults. Sci Rep. 2019;9(1):9772.</Citation>
</Reference>
<Reference>
<Citation>Airhart SE, Shireman LM, Risler LJ, et al. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS One. 2017;12(12):e0186459.</Citation>
</Reference>
<Reference>
<Citation>Kamanna VS, Ganji SH, Kashyap ML. The mechanism and mitigation of niacin-induced flushing. Int J Clin Pract. 2009;63(9):1369-1377.</Citation>
</Reference>
<Reference>
<Citation>Jaconello P. Niacin versus niacinamide. CMAJ. 1992;147(7):990.</Citation>
</Reference>
<Reference>
<Citation>Bogan KL, Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr. 2008;28:115-130.</Citation>
</Reference>
<Reference>
<Citation>Gardell SJ, Hopf M, Khan A, et al. Boosting NAD(+) with a small molecule that activates NAMPT. Nat Commun. 2019;10(1):3241.</Citation>
</Reference>
<Reference>
<Citation>Lin H, Kwan AL, Dutcher SK. Synthesizing and salvaging NAD: lessons learned from Chlamydomonas reinhardtii. PLoS Genet. 2010;6(9):e1001105.</Citation>
</Reference>
<Reference>
<Citation>Hopkins TA, Ainsworth WB, Ellis PA, et al. PARP1 trapping by PARP inhibitors drives cytotoxicity in both cancer cells and healthy bone marrow. Mol Cancer Res. 2019;17(2):409-419.</Citation>
</Reference>
<Reference>
<Citation>Huang S-M, Mishina YM, Liu S, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461(7264):614-620.</Citation>
</Reference>
<Reference>
<Citation>Planavila A, Iglesias R, Giralt M, Villarroya F. Sirt1 acts in association with PPARalpha to protect the heart from hypertrophy, metabolic dysregulation, and inflammation. Cardiovasc Res. 2011;90(2):276-284.</Citation>
</Reference>
<Reference>
<Citation>Pillai VB, Sundaresan NR, Kim G, et al. Nampt secreted from cardiomyocytes promotes development of cardiac hypertrophy and adverse ventricular remodeling. Am J Physiol Heart Circ Physiol. 2013;304(3):H415-426.</Citation>
</Reference>
<Reference>
<Citation>Yano M, Akazawa H, Oka T, et al. Monocyte-derived extracellular Nampt-dependent biosynthesis of NAD(+) protects the heart against pressure overload. Sci Rep. 2015;5:15857.</Citation>
</Reference>
<Reference>
<Citation>Zhang C, Zhu R, Wang H, et al. Nicotinamide phosphate transferase (NAMPT) increases in plasma in patients with acute coronary syndromes, and promotes macrophages to M2 polarization. Int Heart J. 2018;59(5):1116-1122.</Citation>
</Reference>
<Reference>
<Citation>Chiu C-A, Yu T-H, Hung W-C, et al. Increased expression of visfatin in monocytes and macrophages in male acute myocardial infarction patients. Mediators Inflamm. 2012;2012:469852.</Citation>
</Reference>
<Reference>
<Citation>Liu SW, Qiao SB, Yuan JS, Liu DQ. Association of plasma visfatin levels with inflammation, atherosclerosis and acute coronary syndromes (ACS) in humans. Clin Endocrinol (Oxf). 2009;71(2):202-207.</Citation>
</Reference>
<Reference>
<Citation>Yang K, Lauritzen KH, Olsen MB, et al. Low Cellular NAD(+) Compromises Lipopolysaccharide-Induced Inflammatory Responses via Inhibiting TLR4 Signal Transduction in Human Monocytes. J Immunol. 2019;203(6):1598-1608.</Citation>
</Reference>
<Reference>
<Citation>Lu L-F, Wang C-P, Yu T-H, et al. Interpretation of elevated plasma visfatin concentrations in patients with ST-elevation myocardial infarction. Cytokine. 2012;57(1):74-80.</Citation>
</Reference>
<Reference>
<Citation>Evans L, Williams AS, Hayes AJ, Jones SA, Nowell M. Suppression of leukocyte infiltration and cartilage degradation by selective inhibition of pre-B cell colony-enhancing factor/visfatin/nicotinamide phosphoribosyltransferase: Apo866-mediated therapy in human fibroblasts and murine collagen-induced arthritis. Arthritis Rheum. 2011;63(7):1866-1877.</Citation>
</Reference>
<Reference>
<Citation>Busso N, Karababa M, Nobile M, et al. Pharmacological inhibition of nicotinamide phosphoribosyltransferase/visfatin enzymatic activity identifies a new inflammatory pathway linked to NAD. PLoS One. 2008;3(5):e2267.</Citation>
</Reference>
<Reference>
<Citation>Elhassan YS, Kluckova K, Fletcher RS, et al. Nicotinamide Riboside Augments the Aged Human Skeletal Muscle NAD(+) Metabolome and Induces Transcriptomic and Anti-inflammatory Signatures. Cell Rep. 2019;28(7):1717-1728.e1716.</Citation>
</Reference>
<Reference>
<Citation>Heer CD, Sanderson DJ, Alhammad YMO, et al. Coronavirus and PARP expression dysregulate the NAD Metabolome: a potentially actionable component of innate immunity. bioRxiv [Preprint]. 2020. https://doi.org/10.1101/2020.04.17.047480</Citation>
</Reference>
<Reference>
<Citation>Stout-Delgado HW, Cho SJ, Chu SG, et al. Age-dependent susceptibility to pulmonary fibrosis is associated with NLRP3 inflammasome activation. Am J Respir Cell Mol Biol. 2016;55(2):252-263.</Citation>
</Reference>
<Reference>
<Citation>Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529-547.</Citation>
</Reference>
<Reference>
<Citation>Tunaru S, Kero J, Schaub A, et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat Med. 2003;9(3):352-355.</Citation>
</Reference>
<Reference>
<Citation>Martens CR, Denman BA, Mazzo MR, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD(+) in healthy middle-aged and older adults. Nat Commun. 2018;9(1):1286.</Citation>
</Reference>
<Reference>
<Citation>Dellinger RW, Santos SR, Morris M, et al. Repeat dose NRPT (nicotinamide riboside and pterostilbene) increases NAD(+) levels in humans safely and sustainably: a randomized, double-blind, placebo-controlled study. NPJ Aging Mech Dis. 2017;3:17.</Citation>
</Reference>
<Reference>
<Citation>Brenner C, Boileau AC. Pterostilbene raises low density lipoprotein cholesterol in people. Clin Nutr. 2019;38(1):480-481.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
<li>Liban</li>
<li>Norvège</li>
<li>États-Unis</li>
</country>
<region>
<li>État du Mississippi</li>
<li>Østlandet</li>
</region>
<settlement>
<li>Oslo</li>
</settlement>
</list>
<tree>
<country name="Liban">
<noRegion>
<name sortKey="Tannous, Cynthia" sort="Tannous, Cynthia" uniqKey="Tannous C" first="Cynthia" last="Tannous">Cynthia Tannous</name>
</noRegion>
<name sortKey="Muhieddine, Dina H" sort="Muhieddine, Dina H" uniqKey="Muhieddine D" first="Dina H" last="Muhieddine">Dina H. Muhieddine</name>
<name sortKey="Refaat, Marwan M" sort="Refaat, Marwan M" uniqKey="Refaat M" first="Marwan M" last="Refaat">Marwan M. Refaat</name>
<name sortKey="Refaat, Marwan M" sort="Refaat, Marwan M" uniqKey="Refaat M" first="Marwan M" last="Refaat">Marwan M. Refaat</name>
<name sortKey="Zouein, Fouad A" sort="Zouein, Fouad A" uniqKey="Zouein F" first="Fouad A" last="Zouein">Fouad A. Zouein</name>
</country>
<country name="États-Unis">
<region name="État du Mississippi">
<name sortKey="Booz, George W" sort="Booz, George W" uniqKey="Booz G" first="George W" last="Booz">George W. Booz</name>
</region>
<name sortKey="Altara, Raffaele" sort="Altara, Raffaele" uniqKey="Altara R" first="Raffaele" last="Altara">Raffaele Altara</name>
</country>
<country name="Norvège">
<region name="Østlandet">
<name sortKey="Altara, Raffaele" sort="Altara, Raffaele" uniqKey="Altara R" first="Raffaele" last="Altara">Raffaele Altara</name>
</region>
<name sortKey="Altara, Raffaele" sort="Altara, Raffaele" uniqKey="Altara R" first="Raffaele" last="Altara">Raffaele Altara</name>
</country>
<country name="France">
<noRegion>
<name sortKey="Mericskay, Mathias" sort="Mericskay, Mathias" uniqKey="Mericskay M" first="Mathias" last="Mericskay">Mathias Mericskay</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidFranceV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A57 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A57 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidFranceV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32853469
   |texte=   Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32853469" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidFranceV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Oct 6 23:31:36 2020. Site generation: Fri Feb 12 22:48:37 2021